Cryonics Revival Scenarios and Potential Roadmaps

Sponge-like electrodes inspired by sugar cubes could improve medical monitoring

Published in Tools.

To monitor heart rhythms and muscle function, doctors often attach electrodes to a patient’s skin, detecting the electrical signals that lie beneath. These impulses are vital to the early diagnosis and treatment of many disorders, but currently available electrodes have limited function or are expensive to manufacture. Researchers reporting in ACS Nano, however, have now developed a low-cost, spongy version with improved signal detection that’s made with a surprising template—a sugar cube.

The current gold-standard electrodes for electrophysiologic monitoring rely on a silver disc that contacts the skin through a conductive gel. These electrodes are critical tools for detecting abnormal electrical signals linked to health issues, such as heart attacks, brain disorders or neuromuscular diseases. These devices are not without their drawbacks, however. They are rigid and cannot conform well to the skin, particularly when the patient is physically active, reducing signal quality. In addition, the conductive gel dries quickly, preventing long-term monitoring and rare-event detection. Addressing these challenges, researchers have designed soft electrodes that better conform to the skin, as well as microneedle-based versions that physically penetrate the skin, but these are expensive to manufacture, limiting their widespread use. So, Chuan Wang and colleagues wanted to develop a low-cost sponge-like electrode that would offer more consistent and resilient skin contact.

https://phys.org/news/2022-08-sponge-like-electrodes-sugar-cubes-medical.html